Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 83
1.
Antiviral Res ; 222: 105799, 2024 02.
Article En | MEDLINE | ID: mdl-38190973

Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. Presently, there is no drug specifically approved for the treatment of adenovirus infections by the FDA. The state-of-the-art treatment of such infections is the off-label use of cidofovir, an acyclic nucleotide phosphonate. While cidofovir inhibits adenovirus replication, it has dose-limiting kidney toxicity. There is an apparent need for a better compound to treat adenovirus infections. To this end, we have been developing acyclic nucleotide phosphonate prodrugs that utilize an amino acid scaffold equipped with a lipophilic modifier. Here, we compare the antiviral potential of two prodrugs of HPMPA that differ only in the amino acid-based promoiety: USC-087, based on an N-hexadecyl tyrosinamide, and USC-093, based on an N-hexadecyl serinamide. Oral administration of both compounds was very efficacious against disseminated HAdV-C6 infection in immunosuppressed Syrian hamsters, suppressing virus replication and mitigating pathology even when treatment was withheld until 4 days after challenge. We saw only marginal efficacy after respiratory infection of hamsters, which may reflect suboptimal distribution to the lung. Importantly, neither compound induced intestinal toxicity, which was observed as the major adverse effect in clinical trials of brincidofovir, a prodrug of cidofovir which also contains a C-16 modifier. Notably, we found that there was a significant difference in the nephrotoxicity of the two compounds: USC-087 caused significant kidney toxicity while USC-093 did not, at effective doses. These findings will be valuable guidepoints in the future evolution of this new class of potential prodrugs to treat adenovirus infections.


Adenine/analogs & derivatives , Adenoviridae Infections , Adenovirus Infections, Human , Organophosphonates , Prodrugs , Tyrosine/analogs & derivatives , Cricetinae , Animals , Humans , Adenovirus Infections, Human/drug therapy , Cidofovir/pharmacology , Cidofovir/therapeutic use , Mesocricetus , Antiviral Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Adenoviridae , Virus Replication , Organophosphonates/pharmacology , Organophosphonates/therapeutic use , Adenoviridae Infections/drug therapy , Cytosine/pharmacology , Cytosine/therapeutic use , Amino Acids/pharmacology , Nucleotides/therapeutic use
2.
Bioorg Med Chem ; 96: 117531, 2023 12 15.
Article En | MEDLINE | ID: mdl-37972434

The main protease (Mpro) represents one of the most effective and attractive targets for designing anti-SARS-CoV-2 drugs. In this study, we designed and synthesized a novel series of Ebselen derivatives by incorporating privileged fragments from different pockets of the Mpro active site. Among these compounds, 11 compounds showed submicromolar activity in the FRET-based SARS-CoV-2 Mpro inhibition assay, with IC50 values ranging from 233 nM to 550 nM. Notably, compound 3a displayed submicromolar Mpro activity (IC50 = 364 nM) and low micromolar antiviral activity (EC50 = 8.01 µM), comparable to that of Ebselen (IC50 = 339 nM, EC50 = 3.78 µM). Time-dependent inhibition assay confirmed that these compounds acted as covalent inhibitors. Taken together, our optimization campaigns thoroughly explored the structural diversity of Ebselen and verified the impact of specific modifications on potency against Mpro.


COVID-19 , Humans , SARS-CoV-2 , Azoles/pharmacology , Structure-Activity Relationship , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Molecular Docking Simulation
3.
J Med Chem ; 66(23): 16426-16440, 2023 12 14.
Article En | MEDLINE | ID: mdl-37992202

The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 µM) and exhibited excellent antiviral activity (EC50 = 0.40 µM), reaching the same level as Nirmatrelvir (EC50 = 0.38 µM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.


COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Piperazines/pharmacology
4.
RSC Med Chem ; 14(10): 2068-2078, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37859715

SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The N-substituted isatin derivative L-26 is a potential SARS-CoV-2 3CLpro inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CLpro inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay. Compounds D1N8 (IC50 = 0.44 ± 0.12 µM) and D1N52 (IC50 = 0.53 ± 0.21 µM) displayed excellent inhibitory potency against SARS-CoV-2 3CLpro, being equivalent to that of L-26 (IC50 = 0.30 ± 0.14 µM). In addition, the cytotoxicity of D1N8 (CC50 >20 µM) and D1N52 (CC50 >20 µM) decreased significantly compared with L-26 (CC50 <2.6 µM). Further molecular dynamics simulations revealed the potential binding interactions between D1N52 and SARS-CoV-2 3CLpro. These efforts lay a solid foundation for the research of novel anti-SARS-CoV-2 agents targeting 3CLpro.

5.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37513843

Morquio A disease is a genetic disorder resulting in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, and patients are currently treated with enzyme replacement therapy via weekly intravenous enzyme infusions. A means of sustained enzyme delivery could improve patient quality of life by reducing the administration time, frequency of hospital visits, and treatment cost. In this study, we investigated poly(ethylene-glycol) (PEG) hydrogels as a tunable, hydrolytically degradable drug delivery system for the encapsulation and sustained release of recombinant human GALNS (rhGALNS). We evaluated hydrogel formulations that optimized hydrogel gelation and degradation time while retaining rhGALNS activity and sustaining rhGALNS release. We observed the release of active rhGALNS for up to 28 days in vitro from the optimized formulation. rhGALNS activity was preserved in the hydrogel relative to buffer over the release window, and encapsulation was found to have no impact on the rhGALNS structure when measured by intrinsic fluorescence, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vivo, we monitored the retention of fluorescently labeled rhGALNS in C57BL/6 albino mice when administered via subcutaneous injection and observed rhGALNS present for up to 20 days when delivered in a hydrogel versus 7 days in the buffer control. These results indicate that PEG hydrogels are suitable for the encapsulation, preservation, and sustained release of recombinant enzymes and may present an alternative method of delivering enzyme replacement therapies that improve patient quality of life.

6.
Mol Ther ; 31(3): 715-728, 2023 03 01.
Article En | MEDLINE | ID: mdl-36609146

Overexpression of Lin28 is detected in various cancers with involvement in the self-renewal process and cancer stem cell generation. In the present study, we evaluated how the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC). Our result using HCC patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1), a kynurenine-producing enzyme with effects on tumor immune escape, and Lin28B. Using in silico prediction, we identified a Sox2/Oct4 transcriptional motif acting as an enhancer for IDO1. Knockdown of Lin28B reduced Sox2/Oct4 and downregulated IDO1 in tumor-initiating hepatic cancer cells. We further observed that inhibition of Lin28 by a small-molecule inhibitor (C1632) suppressed IDO1 expression. Suppression of IDO1 resulted in a decline in kynurenine production from tumor-initiating cells. Inhibition of the Lin28 axis also impaired PD-L1 expression in HCC cells. Consequently, modulating Lin28B enhanced in vitro cytotoxicity of glypican-3 (GPC3)-chimeric antigen receptor (CAR) T and NK cells. Next, we observed that GPC3-CAR T cell treatment together with C1632 in a HCC xenograft mouse model led to enhanced anti-tumor activity. In conclusion, our results suggest that inhibition of Lin28B reduces IDO1 and PD-L1 expression and enhances immunotherapeutic potential of GPC3-CART cells against HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , T-Lymphocytes/metabolism , Receptors, Chimeric Antigen/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , B7-H1 Antigen/metabolism , Glypicans/genetics , Kynurenine/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
7.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Article En | MEDLINE | ID: mdl-36484496

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Cytomegalovirus Infections , Organophosphonates , Prodrugs , Mice , Humans , Animals , Antiviral Agents/pharmacokinetics , Biological Availability , Prodrugs/pharmacology , Cytosine , Cidofovir
8.
J Med Chem ; 65(24): 16902-16917, 2022 12 22.
Article En | MEDLINE | ID: mdl-36475694

The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 µM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 µM), similar to that of remdesivir (EC50 = 2.27 µM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.


COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Piperazines/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
9.
Antiviral Res ; 208: 105431, 2022 12.
Article En | MEDLINE | ID: mdl-36209985

Clusters of acute non HepA-E hepatitis cases in previously healthy children have been reported globally. At least, 1010 cases were identified in 35 countries, 5% of those cases required liver transplantation and 2% died. The exact cause is not yet known, but there is circumstantial evidence suggesting that human adenovirus F41 (HAdV-F41) might be playing a role. No antiviral drug has been approved for treating human adenovirus infections. Furthermore, HAdV-F41 is notoriously difficult to grow in cell culture, which hindered studying the efficacy of an antiviral compound against this virus. Here, we show that filociclovir (FCV), a nucleoside analog, is a potent inhibitor of HAdV-F41 in cell culture using 2 approaches, namely immunostaining of infected cells and virus yield reduction assay. The activity of FCV was compared to 3 other known antivirals: cidofovir (CDV), ganciclovir (GCV) and valganciclovir (VGCV). Among the 4 compounds examined in this study, FCV was the most potent, with an EC50 of 3.5 µM. These compounds can be ranked by potency as follows: FCV > CDV > GCV ≥ VGCV. In addition, FCV was 10-fold more potent than CDV in a virus yield reduction assay. This report provides timely and valuable methodologies to the research community for testing antivirals against HAdV-F41. Our findings also support the continued development of FCV for various therapeutic applications, including pediatric hepatitis, if a causal relationship is firmly established in the future.


Adenoviruses, Human , Humans , Child , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Valganciclovir , Ganciclovir/therapeutic use , Cidofovir/pharmacology
10.
J Med Chem ; 65(19): 13343-13364, 2022 10 13.
Article En | MEDLINE | ID: mdl-36107752

The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 µM) and displays excellent antiviral activity (EC50 = 1.1 µM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 µM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 µM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.


COVID-19 , Hepatitis C, Chronic , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Caspase 3 , Cathepsins , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Orotic Acid/analogs & derivatives , Piperazines/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
12.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article En | MEDLINE | ID: mdl-32816736

Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 µM and a 50% cytotoxic concentration (CC50) of 100 to 150 µM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.


Adenovirus Infections, Human , Adenoviruses, Human , Cytomegalovirus Infections , Adenovirus Infections, Human/drug therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Cytomegalovirus Infections/drug therapy , Humans , Virus Replication
13.
Dis Model Mech ; 13(8)2020 08 27.
Article En | MEDLINE | ID: mdl-32651192

Model animals are indispensable for the study of human diseases, and in general, of complex biological processes. The Syrian hamster is an important model animal for infectious diseases, behavioral science and metabolic science, for which more experimental tools are becoming available. Here, we describe the generation and characterization of an interleukin-2 receptor subunit gamma (Il2rg) knockout (KO) Syrian hamster strain. In humans, mutations in IL2RG can result in a total failure of T and natural killer (NK) lymphocyte development and nonfunctional B lymphocytes (X-linked severe combined immunodeficiency; XSCID). Therefore, we sought to develop a non-murine model to study XSCID and the infectious diseases associated with IL2RG deficiency. We demonstrated that the Il2rg KO hamsters have a lymphoid compartment that is greatly reduced in size and diversity, and is impaired in function. As a result of the defective adaptive immune response, Il2rg KO hamsters developed a more severe human adenovirus infection and cleared virus less efficiently than immune competent wild-type hamsters. Because of this enhanced virus replication, Il2rg KO hamsters developed more severe adenovirus-induced liver pathology than wild-type hamsters. This novel hamster strain will provide researchers with a new tool to investigate human XSCID and its related infections.


Adaptive Immunity , Adenovirus Infections, Human/virology , Adenoviruses, Human/pathogenicity , Immunocompromised Host , Interleukin Receptor Common gamma Subunit/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , A549 Cells , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/metabolism , Adenoviruses, Human/growth & development , Animals , Animals, Genetically Modified , Disease Models, Animal , Female , Gene Knockout Techniques , HEK293 Cells , Host-Pathogen Interactions , Humans , Interleukin Receptor Common gamma Subunit/deficiency , Liver/immunology , Liver/metabolism , Liver/virology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Mesocricetus/genetics , Viral Load , Virus Replication , X-Linked Combined Immunodeficiency Diseases/immunology , X-Linked Combined Immunodeficiency Diseases/metabolism
14.
Cardiol J ; 27(4): 368-375, 2020.
Article En | MEDLINE | ID: mdl-32329040

BACKGROUND: Catheter directed thrombolysis (CDT) and thrombectomy represent well established techniques for the treatment of intermediate pulmonary embolism (IPE). The long-term effect of catheter directed thrombolysis of IPE is unknown. METHODS: Clinical, interventional and echocardiographic data from 80 consecutive patients with IPE who were treated with CDT were evaluated. Primary end-points were technical success and major adverse events. Secondary end-points were cardiovascular mortality, all-cause mortality, clinical success, rate of bleeding complications, improvement in pulmonary pressure and echocardiography parameters. CDT completed with alteplase (10 mg bolus and 1 mg/h maintenance dose) through a pig-tail catheter for 24 h. After 24 h, control pulmonary angiography was performed. RESULTS: In total, 80 patients with a mean age of 59.0 ± 16.8 years were treated. CDT was successful after the first post-operative day in 72 (90%) patients, but thrombus aspiration and fragmentation was performed due to failed thrombolysis in 8 (10%) patients. Final technical and clinical success was reached in 79 (98.8%) and 77 (96.3%) patients, respectively. The mean CDT time in IPE was 27.8 ± 9.6 h. Invasive pulmonary pressure dropped from 57.5 ± 16.7 to 38.9 ± 13.5 (p < 0.001). A caval filter was implanted in 4 (5%) patients. The 1-year major adverse events and cardiovascular mortality rate was 4.0% and 1.4%, respectively. Access site complications (6 major and 6 minor) were encountered in 12 (16.2%) patients. CONCLUSIONS: Catheter directed thrombolysis in submassive pulmonary embolism had excellent results. However, additional mechanical thrombectomy was necessary in some patients to achieve good clinical outcomes.


Fibrinolytic Agents , Pulmonary Embolism , Catheters , Fibrinolytic Agents/therapeutic use , Humans , Pulmonary Embolism/drug therapy , Pulmonary Embolism/therapy , Retrospective Studies , Thrombectomy , Thrombolytic Therapy , Treatment Outcome
15.
FEMS Microbiol Rev ; 43(4): 380-388, 2019 07 01.
Article En | MEDLINE | ID: mdl-30916746

The symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.


Adenoviridae Infections/drug therapy , Adenoviruses, Human/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Development , Mesocricetus , Animals , Cricetinae , Disease Models, Animal
16.
Viruses ; 10(5)2018 05 06.
Article En | MEDLINE | ID: mdl-29734775

The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster (Mesocricetus auratus) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.


Adenoviridae Infections/immunology , Genes, RAG-1/genetics , Genes, RAG-1/immunology , Immunologic Deficiency Syndromes/genetics , Adenoviruses, Human , Animals , B-Lymphocytes/cytology , CRISPR-Cas Systems , Disease Models, Animal , Frameshift Mutation , Killer Cells, Natural/cytology , Mesocricetus , Spleen/immunology , Spleen/pathology , T-Lymphocytes/cytology
17.
Antiviral Res ; 153: 1-9, 2018 05.
Article En | MEDLINE | ID: mdl-29510156

Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.


Adenine/analogs & derivatives , Adenovirus Infections, Human/drug therapy , Adenoviruses, Human/drug effects , Antiviral Agents/administration & dosage , Organophosphonates/administration & dosage , Prodrugs/administration & dosage , Tyrosine/analogs & derivatives , Adenine/administration & dosage , Administration, Oral , Animals , Disease Models, Animal , Immunocompromised Host , Liver/pathology , Mesocricetus , Survival Analysis , Treatment Outcome , Tyrosine/administration & dosage
18.
Virology ; 514: 66-78, 2018 01 15.
Article En | MEDLINE | ID: mdl-29132049

Recently, increasing attention has been focused on the influence of sex on the course of infectious diseases. Thus far, the best-documented examples point toward an immune-mediated mechanism: the generally stronger immune response in females can result in a faster clearance of the pathogen or, conversely, a more severe immune-mediated pathology. Here, we report that human species C adenoviruses replicate more and cause more pathology in male Syrian hamsters than in females. We also show that this sex disparity is not caused by a stronger immune response to the infection by the female hamsters. Rather, the liver of male hamsters is more susceptible to adenovirus infection: after intravenous injection, more hepatocytes become infected in male animals than in females. We hypothesize that Kupffer cells (hepatic tissue macrophages) of female animals are more active in sequestering circulating virions, and thus protect hepatocytes more efficiently than those of males.


Adenoviridae Infections/virology , Adenoviruses, Human/physiology , Adenoviridae Infections/immunology , Animals , Cricetinae , Disease Models, Animal , Disease Susceptibility , Female , Humans , Kupffer Cells/immunology , Kupffer Cells/virology , Liver/immunology , Liver/virology , Male , Mesocricetus , Sex Factors
19.
Mol Ther Nucleic Acids ; 8: 300-316, 2017 Sep 15.
Article En | MEDLINE | ID: mdl-28918031

Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.

20.
Antiviral Res ; 146: 121-129, 2017 Oct.
Article En | MEDLINE | ID: mdl-28827083

Adenovirus infections of immunocompetent adults are usually mild and resolve without serious sequelae. However, adenovirus infections of immunocompromised patients often develop into life-threatening multi-organ disease. Pediatric hematopoietic transplant patients are especially threatened, with high incidence of infection and high mortality rates. Presently, there is no drug specifically approved by the FDA to treat adenovirus infections; thus there is an urgent need to develop effective antivirals against the virus. Previously, we demonstrated that brincidofovir and valganciclovir were efficacious against lethal intravenous challenge with human type 5 adenovirus in the Syrian hamster model. Here, we tested the in vivo efficacy of the combination of these two drugs and showed that the combination of brincidofovir and valganciclovir is more efficacious than either drug alone, thus potentially allowing decreased patient exposure to the drugs while maintaining antiviral efficacy. As antiviral compounds often have toxic side effects, a decrease in dose or duration of therapy allowed by the combination could also improve tolerability.


Adenoviridae Infections/drug therapy , Adenoviruses, Human/drug effects , Antiviral Agents/therapeutic use , Cytosine/analogs & derivatives , Ganciclovir/analogs & derivatives , Organophosphonates/therapeutic use , Adenoviridae Infections/virology , Adenoviruses, Human/physiology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Cytosine/administration & dosage , Cytosine/pharmacology , Cytosine/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Ganciclovir/administration & dosage , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , HEK293 Cells , Humans , Immunocompromised Host , Mesocricetus , Organophosphonates/administration & dosage , Organophosphonates/pharmacology , Valganciclovir , Viral Load/drug effects , Virus Replication/drug effects
...